Steam Trap Monitoring Program Cedar Bayou Plant Miguel Chen Texas Technology Showcase March 18, 2003 - Steam is one of the primary forms of energy used in the chemical industry. - Improvements in the steam system offer plants the potential for significant cost savings. - Recognizing the opportunity the Cedar Bayou Plant started to look for ways to reduce waste in our steam system. #### Size of the Opportunity - Cedar Bayou Plant consumes approximately 1.5 million pounds of steam per hour at various pressure levels from 1600 to 50 psig. - Nearly 7,000 steam traps. - A 1991 survey indicated that 25% of the traps needed repairs. ## Trap Management Program Objectives - Create an ongoing steam trap monitoring and repair program. - Conduct a steam trap survey every six months. - Store trap performance data and repair history in a data base. - Have reporting and trending capability to provide savings and repair history. The system that promised to meet these objectives was the TLV® TrapManagerTM & TrapMan® ### Benefits of the Program - Field device removes judgement from the technician and consistent results are obtained with little experience or training. - Field data is uploaded to a PC for leak quantification, further analysis and reporting. - Corrective action taken based on reports provided. ### Sample Report Master Log Report Printed Date: | | | | Trap Count: | | 1,263 Current Annual Monetary Los | | | Loss: | 68,806 | Current Annual S team Loss: | 17,201 | |--------------------------------|---|--|---------------------------|-------------------------|-----------------------------------|------------|-----------------------------------|------------------------------|--|---|---| | Arce-
TrepID
create date | Model Reme
Trep Type
Menufecturer | Application
Priority
Operation | Elevetion
O rientation | Connetn
Type
Size | Condensate
Rate
Recovered? | Months Use | Pressure
B. Press.
Set Temp | Hr/Dey
Dey/Yr
Stm Cost | Pressure Renge
User Code 1
User Code 2 | Trep Location (Aroa Namo)-Alias Namo | Tost Results
Inspect Dete
Judgement | | 09 2-01 00 1
03/01/2000 | 1811-400
BUCKET
ARMSTRONG | Un specified
Im portant
Continuous | Outdoor low
horizontal | SCREW NPT
0.75 | 0
No (To drain) | | 400
0
0 | 24
365
4.00 | 300-600
Area 1
Unspecified | Beam S of GA-861C
(092) UTL-1092 | GOOD
07/14/2002
Autom atic | | 092-01002
03/01/2000 | 721
DISC
YARWAY | Unspecified
In portant
Continuous | Outdoor low
horizontal | SCREW NPT
0.75 | 0
No (To drain) | | 110
0
0 | 24
365
4.00 | 50-150
Area 1
Unspecified | S side GA-807
(092) UTL-1092 | BLOCKED
07/14/2002
Autom atic | | 092-01003
03/14/2002 | FS3-10
FLOAT
TLV | Unspecified
In portant
Continuous | Outdoor low
horizontal | WELD SW
0.75 | 0
No (To drain) | | 100
0
0 | 24
365
4.00 | 50-150
Area 1
Mar 2002 | S side GA-807
(092) UTL-1092 | BLOCKED
07/14/2002
Autom stic | | 09 2-01 00 4
03/14/2002 | FS3-10
FLOAT
TLV | Drip
Im portant
Continuous | Outdoor low
horizontal | WELDSW
050 | 0
No (To drain) | | 110
0
0 | 24
365
4,00 | 50-150
Area 1
Mar 2002 | Inside GA-809 building | BLOCKED
07/15/2002
Autom atic | | 092-01005
03/14/2002 | FS3-10
FLOAT
TLV | Unspecified
In portant
Continuous | Outdoor low
horizontal | WELD SW
0.75 | 0
No (To drain) | | 110
0
0 | 24
365
4.00 | 50-150
Area 1
Mar 2002 | At P-111A discharge
(092) UTL-1092 | GOOD
07/15/2002
Autom atric | | 092-01006
03/01/2000 | 721
DISC
YARWAY | Unspecified
In portant
Continuous | Outdoor low
horizontal | SCREW NPT
0.75 | 0
No (To drain) | | 110
0
0 | 24
365
4.00 | 50-150
Area l
Unspecified | At P-111A discharge
(092) UTL-1092 | BLOCKED
07/15/2002
Autom atic | | 09 2-01 00 7
03/01/2000 | 1011
BUCKET
ARMSTRONG | Tracer
Im portant
Continuous | Outdoor low
vertical | SCREW NPT
050 | 0
Yes | | 110
9
0 | 24
365
4.00 | 50-150
Area 1
Unspecified | N side Amocom eter bldg
(092) UTL-1092 | GOOD
07/15/2002
Autom atic | | 092-01008
08/04/2000 | FS3-10
FLOAT
TLV | Tracer
Im portant
Continuous | Outdoor low
vertical | SCREW NPT
0.50 | 0
Yes | 08/04/2000 | 110
9
0 | 24
365
4.00 | 50-150
Area 1
Unspecified | N side Amocom eter bldg
(092) UTL-1092 | LOW TEMP.
07/15/2002
Autom stic | | 092-01009
06/26/2000 | FS3-10
FLOAT
TLV | Tracer
Im portant
Continuous | Outdoor low
vertical | SCREW NPT
0.50 | 0
Yes | 0.00000000 | 110
9
0 | 24
365
4.00 | 50-150
Area l
Unspecified | N side Amocom eter bldg
(092) UTL-1092 | LOW TEMP.
07/15/2002
Autom stic | | 09 2-01 01 0
03/14/2002 | FS3-10
FLOAT
TLV | Tracer
Im portant
Continuous | Outdoor low
vertical | WELD SW
050 | 0
Yes | | 110
9
0 | 24
365
4.00 | 50-150
Area 1
Mar 2002 | N side Amocom eter bldg
(092) UTL-1092 | GOOD
07/15/2002
Autom atic | | 092-01011
03/14/2002 | FS3-10
FLOAT
TLV | Tracer
Im portant
Continuous | Outdoor low
vertical | WELDSW
050 | 0
Yes | | 110
9
0 | 24
365
4.00 | 50-150
Area 1
Mar 2002 | N side Amocom eter bldg
(092) UTL-1092 | G-00D
07/15/2002
Autom atic | Pressure: psi Temperature: F Pipe Size: inch Currency: \$ Steam Cost: \$/1,000lbs Inspection Frequency: Month(s) Condensate Rate: DoAr Steam Loss: 1,000 Do / Year Dollar Loss: \$/ Year #### Documented Savings - Program was implemented in 1998 and has identified poorly performing traps, equipment problems and leaks in the steam system. - In 3 years, \$3 million in net costs have been saved.